
Containerization is a form of virtualization where applications run in isolated user spaces, called
containers, while using the same shared operating system (OS). One of the benefits of
containerization is that a container is essentially a fully packaged and portable computing
environment.

A container is standard unit of software that packages up code and all its dependencies so the
application runs quickly and reliably from one computing environment to another.

This chapter details the container management software I currently use to manage containerized
applications.

Docker
Docker Compose
Portainer
Watchtower

Container
Applications

Docker is an application that simplifies the process of managing application processes in
containers. Containers let you run your applications in resource-isolated processes. They’re similar
to virtual machines, but containers are more portable, more resource-friendly, and more dependent
on the host operating system.

In this guide, you will install Docker Community Edition (CE) on Ubuntu 22.04.

To follow this tutorial, you will need the following:

One Ubuntu 22.04 server, including a sudo non-root user and a firewall.
An account on Docker Hub if you wish to create your own images and push them to
Docker Hub.

The Docker installation package available in the official Ubuntu repository may not be the latest
version. To ensure we get the latest version, we’ll install Docker from the official Docker repository.
To do that, we’ll add a new package source, add the GPG key from Docker to ensure the downloads
are valid, and then install the package.

First, update your existing list of packages:

Next, install a few prerequisite packages which let apt use packages over HTTPS:

Then add the GPG key for the official Docker repository to your system:

Docker

Installation

sudo apt update

sudo apt install apt-transport-https ca-certificates curl software-properties-common

https://www.docker.com/
https://hub.docker.com/

Add the Docker repository to APT sources:

Update your existing list of packages again for the addition to be recognized:

Make sure you are about to install from the Docker repo instead of the default Ubuntu repo:

You’ll see output like this, although the version number for Docker may be different:

Output of apt-cache policy docker-ce

Notice that docker-ce is not installed, but the candidate for installation is from the Docker
repository for Ubuntu 22.04 (jammy).

Finally, install Docker:

Docker should now be installed, the daemon started, and the process enabled to start on boot.
Check that it’s running:

The output should be similar to the following, showing that the service is active and running:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-
archive-keyring.gpg

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg]
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list
> /dev/null

sudo apt update

apt-cache policy docker-ce

docker-ce:
 Installed: (none)
 Candidate: 5:20.10.14~3-0~ubuntu-jammy
 Version table:
 5:20.10.14~3-0~ubuntu-jammy 500
 500 https://download.docker.com/linux/ubuntu jammy/stable amd64 Packages
 5:20.10.13~3-0~ubuntu-jammy 500
 500 https://download.docker.com/linux/ubuntu jammy/stable amd64 Packages

sudo apt install docker-ce

sudo systemctl status docker

Output

Installing Docker now gives you not just the Docker service (daemon) but also the docker
command line utility, or the Docker client.

● docker.service - Docker Application Container Engine
 Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
 Active: active (running) since Fri 2022-04-01 21:30:25 UTC; 22s ago
TriggeredBy: ● docker.socket
 Docs: https://docs.docker.com
 Main PID: 7854 (dockerd)
 Tasks: 7
 Memory: 38.3M
 CPU: 340ms
 CGroup: /system.slice/docker.service
 └─7854 /usr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock

Compose is a tool for defining and running multi-container Docker applications. With Compose, you
use a YAML file to configure your application’s services. Then, with a single command, you create
and start all the services from your configuration.

I heavily utilize Docker Compose in my environment. I find it much easier to deploy Docker
containers and, of greater importance, to document, update and make changes to my production
containers and stacks.

I also use Portainer for some container management. However, I use it primarily for restarting or
stopping containers and for development and testing purposes.

This guide assumes you are installing Docker Compose on Ubuntu 22.04 LTS.

To make sure you obtain the most updated stable version of Docker Compose, you’ll download this
software from its official Github repository.

You can confirm the latest version available in their releases page. The latest release at the time
of this writing is version 2.16.0

Docker Compose

Installation

Note: Starting with Docker Compose v2, Docker has migrated towards using the compose
CLI plugin command, and away from the original docker-compose . The actual usage involves
dropping the hyphen from docker-compose calls to become docker compose

https://bookstack.timshome.net/books/server-applications/page/portainer
https://github.com/docker/compose
https://github.com/docker/compose/releases

1. Use the following command to download v2.16.0:

2. Set the correct permissions so that the docker compose command is executable:

3. Verify that the installation was successful by running the following:

The terminal should return the version of Docker Compose you selected.

mkdir -p ~/.docker/cli-plugins/
curl -SL https://github.com/docker/compose/releases/download/v2.16.0/docker-compose-linux-x86_64 -o
~/.docker/cli-plugins/docker-compose

If the version has changed since this guide was written, simply replace "2.16.0" in the
command above with the new version number.

chmod +x ~/.docker/cli-plugins/docker-compose

docker compose version

Portainer Community Edition is a lightweight service delivery platform for containerized
applications that can be used to manage Docker, Swarm, Kubernetes and ACI environments. It is
designed to be as simple to deploy as it is to use. The application allows you to manage all your
orchestrator resources (containers, images, volumes, networks and more) through a ‘smart’ GUI
and/or an extensive API.

Portainer consists of a single container that can run on any cluster. It can be deployed as a Linux
container or a Windows native container.

Portainer consists of two elements, the Portainer Server, and the Portainer Agent. Both elements
run as lightweight Docker containers on a Docker engine. This document will help you install the
Portainer Server container on your Linux environment. To add a new Linux environment to an
existing Portainer Server installation, please refer to the Portainer Agent Installation section of
this guide.

To get started, you will need:
The latest version of Docker installed and working
sudo access on the machine that will host your Portainer Server instance
By default, Portainer Server will expose the UI over port 9443
 and expose a TCP tunnel server over port 8000 .

The latter is optional and is only required if you plan to use the Edge compute features with Edge agents.

First, create the volume that Portainer Server will use to store its database:

Portainer

Introduction

Deployment

Then, download and install the Portainer Server container:

Portainer Server has now been installed. You can check to see whether the Portainer Server container has started by running:

If all is well, you should see container is Up

Now that the installation is complete, you can log into your Portainer Server instance by opening a web browser and going to:

Replace localhost with the relevant IP address or FQDN if needed, and adjust the port if you
changed it earlier.
You will be presented with the initial setup page for Portainer Server.

Your first user will be an administrator. The username defaults to admin
 but you can change it if you prefer.

docker volume create portainer_data

docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v
/var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:latest

By default, Portainer generates and uses a self-signed SSL certificate to secure port 9443 .
Alternatively you can provide your own SSL certificate during installation or via the Portainer
UI after installation.

If you require HTTP port 9000 open for legacy reasons, the following to your docker run
command: add -p 9000:9000

docker ps

root:~# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
de5b28eb2fa9 portainer/portainer-ce:latest "/portainer" 2 weeks ago Up 9 days 0.0.0.0:8000-
>8000/tcp, :::8000->8000/tcp, 0.0.0.0:9443->9443/tcp, :::9443->9443/tcp portainer

Logging In

https://localhost:9443

Initial Setup

The password must be at least 12 characters long and meet the listed password requirements.

Once the admin user has been created, the Environment Wizard will automatically launch.

The installation process automatically detects your local environment and sets it up for you.
If you want to add additional environments to manage with this Portainer instance, click Add Environments.

Otherwise, click Get Started to start using Portainer!

Portainer uses the Portainer Agent container to communicate with the Portainer Server instance
and provide access to the node's resources.
On each computer that is running Docker containers that you want to manage, you will need to
install the Portainer agent by executing the following:

Once the agent has been installed you are ready to add the environment to your Portainer Server
installation.

Portainer Agent Installation

docker run -d -p 9001:9001 --name portainer_agent --restart=always -v
/var/run/docker.sock:/var/run/docker.sock -v /var/lib/docker/volumes:/var/lib/docker/volumes
portainer/agent:latest

Watchtower is an application that will monitor your running Docker containers and watch for
changes to the images that those containers were originally started from. If watchtower detects
that an image has changed, it will automatically restart the container using the new image.

With watchtower you can update the running version of your containerized app simply by pushing
a new image to the Docker Hub or your own image registry. Watchtower will pull down your new
image, gracefully shut down your existing container and restart it with the same options that were
used when it was deployed initially.

I am using Docker Compose to run my Watchtower instances.

Follow these steps to get Watchtower up and running:

Make a directory for your Watchtower project and then navigate into it:

Create a new YAML file named docker-compose.yml using nano or your preferred text
editor:

Insert the following into docker-compose.yml :

Watchtower

Installing Watchtower

You need to run an instance of Watchtower on each server where you run Docker containers.

mkdir ~/watchtower
cd ~/watchtower

nano docker-compose.yml

https://containrrr.dev/watchtower/

Where "dockerimage" 1, 2, and 3 are the names of the docker images I want to monitor and update
when a change occurs to the original image.

Save and exit your file. If you used nano , you can do this by pressing CTRL+O , ENTER ,
then CTRL+X . Now you can start your containers using docker compose up . Add the -d flag
to prevent Docker from taking over your terminal:

version: "3"
services:
 watchtower:
 container_name: watchtower
 image: containrrr/watchtower
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 restart: unless-stopped
 environment:
 - TZ=America/New_York
 - WATCHTOWER_LIFECYCLE_HOOKS=1 # Enable pre/post-update scripts
 command: --debug true --cleanup true dockerimage1 dockerimage2 dockerimage3

Make sure to put a "space" between the names of the images you want to monitor

docker compose up -d

Passing a list of containers to monitor, which does not include the watchtower container, will
disable the monitoring of watchtower. By adding it to the argument list, it will start
automatically updating itself.

