
Ubuntu Linux reference information

Canonical Livepatch
Commands

Commands used for System Information
Commands used for File Handling

Ubuntu Linux
Reference

To avoid downtime during kernel upgrades, you can use a feature of the Linux kernel
called live patching. This feature makes it possible to implement kernel updates without
rebooting.

Canonical Livepatch uses the Kernel Live Patching technology built into the standard Linux kernel.
Canonical’s Livepatch website notes that massive corporations like AT&T, Cisco, and Walmart use
it.

It’s free for personal use on up to three computers, these can be “desktops, servers, virtual
machines, or cloud instances.” Organizations can use it on more systems with a paid Ubuntu
Advantage subscription.

Linux kernel patches are a fact of life. Keeping your system secure and patched up to date is vital
in the inter-connected world we live in. But having to reboot your computer to apply kernel patches
can be a pain. Especially if the computer is providing some sort of service to users and you have to
co-ordinate or negotiate with them to take the service off-line. And there’s a multiplier. If you

Canonical Livepatch

What Is Livepatch and How Does It Work?

Kernel Patches Are Necessary But
Inconvenient

maintain several Ubuntu machines, at some point you have to bite the bullet and do each one in
turn.

The Canonical Livepatch Service removes all of the aggravation of keeping your Ubuntu systems up
to date with critical kernel patches. It’s easy to set up and it takes one more chore off your
shoulders.

Anything that reduces maintenance efforts, boosts security, and reduces downtime has to be an
attractive proposition, right? Yes, but there are some caveats.

You must be using a Long Term Support (LTS) release of Ubuntu such as 20.04 or 22.04.
It must be a 64-bit version.
You must be running Linux Kernel 4.4 or higher
You need to have an Ubuntu One account. If you don’t have an Ubuntu One account, you
can sign up for a free account.
You can use the Canonical Livepatch Service at no cost, but you’re limited to three
computers per Ubuntu One account. If you have to maintain more than three computers,
you’ll need additional Ubuntu One accounts.
If you have physical, virtual, or cloud-hosted servers to look after, you’ll need to become
an Ubuntu Advantage customer.

 There are two major maintainers for kernel live patches: Canonical, who provides their own
Livepatch Service for Ubuntu, and KernelCare who support Ubuntu in addition to most other major
Linux distributions. Both require registration to use, and only Canonical’s service is free for
individual use.

You can register for a Livepatch key at https://auth.livepatch.canonical.com/.

After enrolling, you can install the canonical-livepatch snap package. Snap is another Ubuntu
package manager that runs alongside apt .

You can enable canonical-livepatch with a one-line command using the key you obtained when
registering:

The output should contain the message Successfully enabled device. The service should run in the
background from now on without any further intervention, and you can check its status using
canonical-livepatch status :

Installation

sudo snap install canonical-livepatch

sudo canonical-livepatch enable your-key

https://wiki.ubuntu.com/LTS
https://ubuntu.com/pricing/infra
https://ubuntu.com/security/livepatch
https://www.kernelcare.com/
https://auth.livepatch.canonical.com/

After installing, you should see something like this:

You have now configured automatic kernel updates for your server, meaning it should no longer be
necessary to reboot in order to maintain a secure and up-to-date environment.

From time to time, you may need to update your livepatch software. Since this is a Snap package
you will need to perform the following to check if you need to update it.

You may also see a notification similar to this appear on your desktop's notification panel

1. Stop your existing Livepatch instance

 2. Refresh your Livepatch instance

sudo canonical-livepatch status

Output
last check: 50 seconds ago
kernel: 5.15.0-25-generic
server check-in: succeeded
patch state: ✓ all applicable livepatch modules inserted
patch version: 84.1
tier: updates (Free usage; This machine beta tests new patches.)
machine id: 2565a9e7fc9f4405a167e4caf9b9dcf3

Updates

sudo snap info canonical-livepatch

To perform the update, follow these steps:

sudo snap stop canonical-livepatch

sudo snap refresh canonical-livepatch

https://bookstack.timshome.net/uploads/images/gallery/2023-04/M3ja8fUmtvkMmlms-screenshot-from-2023-04-14-21-31-36.png

If successful, you should see output in your terminal similar to this:

canonical-livepatch 10.5.4 from Canonical✓ refreshed

Most frequently used CLI (Terminal) commands on Linux

Commands

Commands

Commands used for System
Information

Command(s) Sample Output

DATE
The simple “date” command displays the current date and
time (including the day of the week, month, time, time
zone, year).

Date TZ
By default, “date” command uses the time zone defined in
path “/etc/localtime”. Linux user can change the time zone
via Terminal by using command “TZ”.

Date --set
Linux allows its user to set the current date and time of
the system manually.
Syntax: date –set=”Date_in_format(YYMMDD)
Time_in_format(HH:MM)”

date

TZ=GMT date

TZ=America/New_York date

sudo date --set="YYYYMMDD HH:MM"

$ date
Thu Mar 2 07:23:38 PM EST 2023

$ TZ=GMT date
Fri Mar 3 12:03:59 AM GMT 2023

$ TZ=America/New_York date
Thu Mar 2 07:04:12 PM EST 2023

Example - This would set the system date to May 18, 2023
10:10 PM

sudo date --set="20230519 22:10"

DF
The command “df” shows the amount of disk space used
and disk space available on every file system containing
each filesystem’s name and its path.

The command “df -h” shows the same result as the
command “df” but now the data is in a more human-
readable format.

df

df -h

$ df
Filesystem 1K-blocks Used Available Use% Mounted
tmpfs 1623284 3612 1619672 1% /run
/dev/nvme0n1p3 491343600 18123184 452739188 4% /
tmpfs 8116400 104604 8011796 2% /dev/shm
tmpfs 5120 4 5116 1% /run/lock
tmpfs 8116400 0 8116400 0% /run/qemu
/dev/nvme0n1p2 456036 182424 239424 44% /boot
/dev/nvme0n1p1 98304 57271 41033 59% /boot/efi
/dev/sda1 47744748 57156 45229840 1% /tmp
/dev/sda3 2787016696 1123163768 1531975216 43% /home
/dev/sda2 47745772 31301948 13986020 70% /var

$ df -h

Filesystem Size Used Avail Use% Mounted on
tmpfs 1.6G 3.6M 1.6G 1% /run
/dev/nvme0n1p3 469G 18G 432G 4% /
tmpfs 7.8G 103M 7.7G 2% /dev/shm
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpfs 7.8G 0 7.8G 0% /run/qemu
/dev/nvme0n1p2 446M 179M 234M 44% /boot
/dev/nvme0n1p1 96M 56M 41M 59% /boot/efi
/dev/sda1 46G 56M 44G 1% /tmp
/dev/sda3 2.6T 1.1T 1.5T 43% /home
/dev/sda2 46G 30G 14G 70% /var

FREE
The command “free” displays the amount of free and used
memory in the complete system.

free

$ free
 total used free shared buff/cache available
Mem: 16232800 4698636 6761664 59100 4772500
 11205016
Swap: 2097152 0 2097152

PS
The command “ps” which is also known as the process
status command is used to provide information about the
processes currently running on the system, including
their respective process identification numbers (PIDs)

PS AUX & PS -EF
Both list all processes of all users. In that aspect -e and
ax are completely equivalent.

Where they differ is output format specifier, -f is "full",
while u is "user-oriented". The displayed columns are
different:

ps

ps -ef

ps -aux

$ ps
 PID TTY TIME CMD
 434765 pts/0 00:00:00 bash
 441698 pts/0 00:00:00 ps

$ ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Feb07 ? 00:19:03 /sbin/init splash
root 2 0 0 Feb07 ? 00:00:03 [kthreadd]
root 3 2 0 Feb07 ? 00:00:00 [rcu_gp]
root 4 2 0 Feb07 ? 00:00:00 [rcu_par_gp]
root 5 2 0 Feb07 ? 00:00:00 [slub_flushwq]
root 6 2 0 Feb07 ? 00:00:00 [netns]

$ ps -aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 169808 12472 ? Ss Feb07 19:03 /sbin/init splash
root 2 0.0 0.0 0 0 ? S Feb07 0:03 [kthreadd]
root 3 0.0 0.0 0 0 ? I< Feb07 0:00 [rcu_gp]
root 4 0.0 0.0 0 0 ? I< Feb07 0:00 [rcu_par_gp]
root 5 0.0 0.0 0 0 ? I< Feb07 0:00 [slub_flushwq]
root 6 0.0 0.0 0 0 ? I< Feb07 0:00 [netns]

UPTIME
The command “uptime” provides information about how
long the system has been running in one line. The result
for this command includes the current time, the time
duration system has been running, the number of users
who are currently logged on, and the system load
averages for the past 1, 5, and 15 minutes respectively.

uptime

$ uptime
 19:59:06 up 22 days, 20:17, 1 user, load average: 0.52, 0.39, 0.38

 W
The command “w” displays detailed information about the
users who are logged into the system currently.

w

$ w
 20:00:25 up 22 days, 20:18, 1 user, load average: 0.44, 0.41, 0.38
USER TTY FROM LOGIN IDLE JCPU PCPU WHAT
tim :1 :1 07Feb23 xdm 2days 0.00s
/usr/libexec/gdm-x-session --run-script env

PASSWD
The command “passwd” stands for password and it is used
to change the password of the user.

passwd my_user

$ passwd tim
changing password for tim.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

EXIT
The command “exit” as the name says it is used to exit
from the system and log out from the current user.

exit

$ exit
logout
Connection to 192.168.1.1 closed.

SS
The ss command is a modern replacement for the classic
netstat command. You can use it on Linux to get statistics
about your network connections.

Use the -ltn flags to list all listening ports on your system.

Use the following to see if a specific port is listening on
your system. In this case, the source port (sport) and
destination port (dport) is 80 or you can use the protocol
name, http, instead.

ss -ltn

ss -a '(dport = :80 or sport = :80)'

ss -a '(dport = :http or sport = :http)'

$ ss -ltn
State Recv-Q Send-Q Local Address:Port Peer Address:Port Process
LISTEN 0 4096 0.0.0.0:9000 0.0.0.0:*
LISTEN 0 4096 0.0.0.0:6767 0.0.0.0:*
LISTEN 0 4096 0.0.0.0:111 0.0.0.0:*
LISTEN 0 4096 0.0.0.0:80 0.0.0.0:*

$ ss -a '(dport = :80 or sport = :80)'
Netid State Recv-Q Send-Q Local
Address:Port Peer Address:PortProcess
tcp LISTEN 0 4096 0.0.0.0:http
0.0.0.0:*
tcp LISTEN 0 4096 [::]:http
[::]:*

SHUTDOWN
The command “shutdown” is used to shut down the
system.

Using the command with no flags will schedule a shutdown
1 minute from execution.

Use the following to IMMEDIATELY shutdown your system.

You can schedule a shutdown in future by providing the
time argument either in +t format or in hh:mm format.
For example, if you want to shutdown the system after 15
minutes, you can use this command:

If you want to shutdown the system at 6 PM in the
afternoon, you can use it in the following manner:

Cancel a shutdown

Reboot a system

Note: The shutdown command needs superuser
privileges. Hence, you should either be root or run
the command with sudo.

sudo shutdown

sudo shutdown now

sudo shutdown +15

sudo shutdown 18:00

sudo shutdown -c

sudo shutdown -r

sudo reboot

$ sudo shutdown
Shutdown scheduled for Thu 2023-03-02 20:12:13 EST, use
'shutdown -c' to cancel.

Commands

Commands used for File
Handling

LS
The command “ls” displays the list of
all directories, folder, and files present
in the current directory.

LS - LTR
The above-mentioned command
displays the name of directories,
folders, files with their respective
owner name, group’s name, and
rights your user has over these.

ls
ls -ltr

/$ ls
bin dev lib libx32 mnt
root snap sys usr
boot etc lib32 lost+found
opt run srv tim var
cdrom home lib64 media
proc sbin swapfile tmp

/$ ls -ltr
total 2097256
drwxr-xr-x 2 root root 4096
Feb 9 2021 mnt
drwxr-xr-x 15 root root
4096 Feb 9 2021 var
drwx------ 2 root root 16384
Feb 11 2022 lost+found
lrwxrwxrwx 1 root root 8
Feb 11 2022 sbin -> usr/sbin
lrwxrwxrwx 1 root root 10
Feb 11 2022 libx32 ->
usr/libx32
lrwxrwxrwx 1 root root 9
Feb 11 2022 lib64 -> usr/lib64
lrwxrwxrwx 1 root root 9
Feb 11 2022 lib32 -> usr/lib32
lrwxrwxrwx 1 root root 7
Feb 11 2022 lib -> usr/lib
lrwxrwxrwx 1 root root 7
Feb 11 2022 bin -> usr/bin
drwxrwxr-x 2 root root
4096 Feb 11 2022 cdrom
drwx------ 10 root root 4096
Feb 12 2022 tim
-rw------- 1 root root
2147487744 Aug 9 2022
swapfile
drwxr-xr-x 5 root root 4096
Aug 14 2022 home
drwxr-xr-x 14 root root
4096 Oct 22 14:08 usr
drwxrwxrwx 7 root root
4096 Nov 26 04:18 media
drwxrwxrwx 13 root root
4096 Jan 7 21:59 opt
drwxr-xr-x 2 root root 4096
Feb 5 07:19 srv
dr-xr-xr-x 13 root root 0
Feb 7 23:41 sys
dr-xr-xr-x 549 root root 0
Feb 7 23:41 proc
drwx------ 12 root root 4096
Feb 8 04:25 root
drwxr-xr-x 20 root root
5120 Feb 17 23:04 dev
drwxr-xr-x 28 root root
4096 Feb 21 23:36 snap
drwxr-xr-x 168 root root
12288 Mar 1 06:24 etc
drwxr-xr-x 5 root root 4096
Mar 2 06:51 boot
drwxr-xr-x 46 root root
1500 Mar 2 20:11 run
drwxrwxrwt 32 root root
20480 Mar 2 21:06 tmp

MKDIR
The command “mkdir” allows users to
create directories/folders in the
system. The user running this
command must have suitable rights
over the parent directory to create a
directory or they will receive an error.
Syntax: mkdir New_Directory’s_Name

mkdir NewDirectory

~$ mkdir poopoo
~$
~$ ls
 Android Pictures
 AppImages poopoo

RMDIR
The command “rmdir” allows users to
remove directories/folders from the
system. The user running this
command must have suitable rights
over the parent directory to remove a
directory AND the directory must not
have any files or sub-directories
within it or you will receive an error.
Syntax: rmdir Directory’s_Name

rmdir DirectoryName ~$ rmdir poopoo
rmdir: failed to remove
'poopoo': Directory not empty
Could not delete directory
"poopoo" because it is not
empty

~$ rm poopoo
rm: cannot remove 'poopoo': Is
a directory
Could not remove "poopoo"
because it is not a file

RM
The command “rm” is used to remove
files from a directory.

RM -RF
Permanently deletes the specified
directory and ALL files and sub-
directories beneath the specified
directory.

Be VERY careful using this
command as you can
inadvertently delete your
whole drive!

rm filename

rm -rf /path/to/dir/name

Listing shows poopoo.txt
file exists under
direcotry "poopoo"
~/poopoo$ ls
poopoo.txt

~/poopoo$ rm poopoo.txt

listing now shows
poopoo.txt has been
removed (deleted)
from directory "poopoo"
~/poopoo$ ls
~/poopoo$

Directory "poopoo" exists
in the listing below
~$ ls
 Android Pictures
 AppImages poopoo
 Audio Public

~$ rm -rf poopoo
~$
Successfully removed
"poopoo" directory
and all its contents
as can be seen in the
listing below

~$ ls
 Android Parkitect
 AppImages Pictures
 Audio Public

MV
The command “mv” is used for two
purposes

To move files or
directories from one path
to another path in the
system.
To rename a file or folder.

mv Source_File_name
Destination_File_Name

mv File_name
New_name_for_file

CP
The command “cp” is used to copy
data from a source file to the
destination file. Its function is almost
like the command “mv”. The only
difference is by using the command
“cp” the source file is not removed
from the directory after its data is
moved to the destination file.

cp source_file_name
destination_file_name

TOUCH
Creates an empty file at the specified
path with the specified name.
Useful for creating a blank file you
intend to edit with a CLI editor, such
as VIM or NANO.

touch /path/name/filename.ext ~$ ls doc.txt
ls: cannot access 'doc.txt': No
such file or directory
~$ touch /home/tim/doc.txt
~$ ls doc.txt
doc.txt

CAT
The command “cat” is a reverse of
the command “tac”. It is used to
display each line of the file starting
from the first row and finishing on its
last row.
This command is more frequently
used than “tac”.

cat file_name

ECHO
The command “echo” used to display
any expression that is passed as an
argument.

echo
expression_to_be_displayed

~/poopoo$ echo something-
poopoo
something-poopoo

GREP
The command “grep” is used to
search for a text in the specified
file/folder.

grep
“expression_to_be_Searched”
file_name_to_search_in

ZIP
The command “zip” is used to
compress one or more files and store
them in a new file with .zip extension.

zip new_zip_file_name.zip ~/poopoo$ zip files.zip file1.txt
file2.txt file3.txt
 adding: file1.txt (stored 0%)
 adding: file2.txt (stored 0%)
 adding: file3.txt (stored 0%)
~/poopoo$ ls
file1.txt file2.txt file3.txt
files.zip

UNZIP
The command “unzip” is used to
decompress a .zip file and extract all
the files within to current directory.

unzip zip_file_name.zip ~/poopoo$ unzip files.zip
Archive: files.zip
replace file1.txt? [y]es, [n]o,
[A]ll, [N]one, [r]ename: A
 extracting: file1.txt
 extracting: file2.txt
 extracting: file3.txt

SUDO
Sudo stands for SuperUser DO and is
used to access restricted files and
operations. By default, Linux restricts
access to certain parts of the system
preventing sensitive files from being
compromised.
The sudo command temporarily
elevates privileges allowing users to
complete sensitive tasks without
logging in as the root user.

sudo -i elevates the user to root for
the remainder of the session rather
than a command by command basis.

sudo some-command

sudo -i

No directory called "peepee"
exists
$ ls
bin dev lib libx32 mnt
root snap sys usr
boot etc lib32 lost+found
opt run srv tim var
cdrom home lib64 media
proc sbin swapfile tmp

Attempt to make directory
"peepee" as a noraml user
fails because I'm
trying to make the
directory in a path I
don't have rights to
$ mkdir peepee
mkdir: cannot create directory
‘peepee’: Permission denied

using SUDO to temporarily
elevate my privileges, I
can now create the
directory "peepee"
in the path as can be seen
in the listing below:
$ sudo mkdir peepee
[sudo] password for tim:

$ ls
bin dev lib libx32
mnt proc sbin swapfile tmp
boot etc lib32 lost+found
opt root snap sys usr
cdrom home lib64 media
peepee run srv tim var

~/poopoo$ sudo -i
[sudo] password for tim:
~#

