
Commands used for File
Handling

LS
The command “ls” displays the list of
all directories, folder, and files present
in the current directory.

LS - LTR
The above-mentioned command
displays the name of directories,
folders, files with their respective
owner name, group’s name, and
rights your user has over these.

ls
ls -ltr

/$ ls
bin dev lib libx32 mnt
root snap sys usr
boot etc lib32 lost+found
opt run srv tim var
cdrom home lib64 media
proc sbin swapfile tmp

/$ ls -ltr
total 2097256
drwxr-xr-x 2 root root 4096
Feb 9 2021 mnt
drwxr-xr-x 15 root root
4096 Feb 9 2021 var
drwx------ 2 root root 16384
Feb 11 2022 lost+found
lrwxrwxrwx 1 root root 8
Feb 11 2022 sbin -> usr/sbin
lrwxrwxrwx 1 root root 10
Feb 11 2022 libx32 ->
usr/libx32
lrwxrwxrwx 1 root root 9
Feb 11 2022 lib64 -> usr/lib64
lrwxrwxrwx 1 root root 9
Feb 11 2022 lib32 -> usr/lib32
lrwxrwxrwx 1 root root 7
Feb 11 2022 lib -> usr/lib
lrwxrwxrwx 1 root root 7
Feb 11 2022 bin -> usr/bin
drwxrwxr-x 2 root root
4096 Feb 11 2022 cdrom
drwx------ 10 root root 4096
Feb 12 2022 tim
-rw------- 1 root root
2147487744 Aug 9 2022
swapfile
drwxr-xr-x 5 root root 4096
Aug 14 2022 home
drwxr-xr-x 14 root root
4096 Oct 22 14:08 usr
drwxrwxrwx 7 root root
4096 Nov 26 04:18 media
drwxrwxrwx 13 root root
4096 Jan 7 21:59 opt
drwxr-xr-x 2 root root 4096
Feb 5 07:19 srv
dr-xr-xr-x 13 root root 0
Feb 7 23:41 sys
dr-xr-xr-x 549 root root 0
Feb 7 23:41 proc
drwx------ 12 root root 4096
Feb 8 04:25 root
drwxr-xr-x 20 root root
5120 Feb 17 23:04 dev
drwxr-xr-x 28 root root
4096 Feb 21 23:36 snap
drwxr-xr-x 168 root root
12288 Mar 1 06:24 etc
drwxr-xr-x 5 root root 4096
Mar 2 06:51 boot
drwxr-xr-x 46 root root
1500 Mar 2 20:11 run
drwxrwxrwt 32 root root
20480 Mar 2 21:06 tmp

MKDIR
The command “mkdir” allows users to
create directories/folders in the
system. The user running this
command must have suitable rights
over the parent directory to create a
directory or they will receive an error.
Syntax: mkdir New_Directory’s_Name

mkdir NewDirectory

~$ mkdir poopoo
~$
~$ ls
 Android Pictures
 AppImages poopoo

RMDIR
The command “rmdir” allows users to
remove directories/folders from the
system. The user running this
command must have suitable rights
over the parent directory to remove a
directory AND the directory must not
have any files or sub-directories
within it or you will receive an error.
Syntax: rmdir Directory’s_Name

rmdir DirectoryName ~$ rmdir poopoo
rmdir: failed to remove
'poopoo': Directory not empty
Could not delete directory
"poopoo" because it is not
empty

~$ rm poopoo
rm: cannot remove 'poopoo': Is
a directory
Could not remove "poopoo"
because it is not a file

RM
The command “rm” is used to remove
files from a directory.

RM -RF
Permanently deletes the specified
directory and ALL files and sub-
directories beneath the specified
directory.

Be VERY careful using this
command as you can
inadvertently delete your
whole drive!

rm filename

rm -rf /path/to/dir/name

Listing shows poopoo.txt
file exists under
direcotry "poopoo"
~/poopoo$ ls
poopoo.txt

~/poopoo$ rm poopoo.txt

listing now shows
poopoo.txt has been
removed (deleted)
from directory "poopoo"
~/poopoo$ ls
~/poopoo$

Directory "poopoo" exists
in the listing below
~$ ls
 Android Pictures
 AppImages poopoo
 Audio Public

~$ rm -rf poopoo
~$
Successfully removed
"poopoo" directory
and all its contents
as can be seen in the
listing below

~$ ls
 Android Parkitect
 AppImages Pictures
 Audio Public

MV
The command “mv” is used for two
purposes

To move files or
directories from one path
to another path in the
system.
To rename a file or folder.

mv Source_File_name
Destination_File_Name

mv File_name
New_name_for_file

CP
The command “cp” is used to copy
data from a source file to the
destination file. Its function is almost
like the command “mv”. The only
difference is by using the command
“cp” the source file is not removed
from the directory after its data is
moved to the destination file.

cp source_file_name
destination_file_name

TOUCH
Creates an empty file at the specified
path with the specified name.
Useful for creating a blank file you
intend to edit with a CLI editor, such
as VIM or NANO.

touch /path/name/filename.ext ~$ ls doc.txt
ls: cannot access 'doc.txt': No
such file or directory
~$ touch /home/tim/doc.txt
~$ ls doc.txt
doc.txt

CAT
The command “cat” is a reverse of
the command “tac”. It is used to
display each line of the file starting
from the first row and finishing on its
last row.
This command is more frequently
used than “tac”.

cat file_name

ECHO
The command “echo” used to display
any expression that is passed as an
argument.

echo
expression_to_be_displayed

~/poopoo$ echo something-
poopoo
something-poopoo

GREP
The command “grep” is used to
search for a text in the specified
file/folder.

grep
“expression_to_be_Searched”
file_name_to_search_in

ZIP
The command “zip” is used to
compress one or more files and store
them in a new file with .zip extension.

zip new_zip_file_name.zip ~/poopoo$ zip files.zip file1.txt
file2.txt file3.txt
 adding: file1.txt (stored 0%)
 adding: file2.txt (stored 0%)
 adding: file3.txt (stored 0%)
~/poopoo$ ls
file1.txt file2.txt file3.txt
files.zip

UNZIP
The command “unzip” is used to
decompress a .zip file and extract all
the files within to current directory.

unzip zip_file_name.zip ~/poopoo$ unzip files.zip
Archive: files.zip
replace file1.txt? [y]es, [n]o,
[A]ll, [N]one, [r]ename: A
 extracting: file1.txt
 extracting: file2.txt
 extracting: file3.txt

SUDO
Sudo stands for SuperUser DO and is
used to access restricted files and
operations. By default, Linux restricts
access to certain parts of the system
preventing sensitive files from being
compromised.
The sudo command temporarily
elevates privileges allowing users to
complete sensitive tasks without
logging in as the root user.

sudo -i elevates the user to root for
the remainder of the session rather
than a command by command basis.

sudo some-command

sudo -i

No directory called "peepee"
exists
$ ls
bin dev lib libx32 mnt
root snap sys usr
boot etc lib32 lost+found
opt run srv tim var
cdrom home lib64 media
proc sbin swapfile tmp

Attempt to make directory
"peepee" as a noraml user
fails because I'm
trying to make the
directory in a path I
don't have rights to
$ mkdir peepee
mkdir: cannot create directory
‘peepee’: Permission denied

using SUDO to temporarily
elevate my privileges, I
can now create the
directory "peepee"
in the path as can be seen
in the listing below:
$ sudo mkdir peepee
[sudo] password for tim:

$ ls
bin dev lib libx32
mnt proc sbin swapfile tmp
boot etc lib32 lost+found
opt root snap sys usr
cdrom home lib64 media
peepee run srv tim var

~/poopoo$ sudo -i
[sudo] password for tim:
~#

Revision #14
Created 3 March 2023 01:59:32 by Tim
Updated 3 March 2023 03:14:56 by Tim

